亚洲精品少妇久久久久久海角社区,色婷婷亚洲一区二区综合,伊人蕉久中文字幕无码专区,日韩免费高清大片在线

羅戈網
搜  索
登陸成功

登陸成功

積分  

解密汽車產業(yè)的1.5倍備貨法

[羅戈導讀]?汽車產業(yè),尤其是傳統(tǒng)的汽車產業(yè),不能說全部都受到豐田管理模式的影響,但至少一部分都有其影子。

汽車產業(yè),尤其是傳統(tǒng)的汽車產業(yè),不能說全部都受到豐田管理模式的影響,但至少一部分都有其影子。豐田著名的一個例子就是追求準時制生產,從而減低庫存,要求使用的庫存能夠恰到好處,同時也運用了看板模式,通過看板告知需求,從而拉動庫存的補充。

雖然說豐田本身能夠通過這個模式達到庫存控制的效果,甚至根據看板等可視化信息,和旗下的一級或者甚至二級供應商進行必要的信息共享,提供它們備貨的指導,而這些供應商大部分都圍繞在豐田四周,因此它們的交貨提前期相對很短。

這種模式中,存在所謂的汽車行業(yè)庫存通則,究竟是否豐田本身設置還是怎么樣的來源無能考究,但是很多相關的汽車供應商等都按照這個準則在使用中。這種方法就是,根據通則,庫存系數(shù)在0.8~1.2之間,反映庫存是處于合理范圍,一旦該系數(shù)超過1.5,那么庫存水平就要值得注意,假如超過2.5,那么庫存就會過高,帶來相關風險和經營壓力。

這個庫存系數(shù),有叫Inventory Ratio,也有叫Stock Level , 通過期末的庫存除以當期銷售來得出,不管是使用金額還是數(shù)量,均可以。如本月底庫存是7萬臺車,當月銷售10萬臺,那么庫存系數(shù)是7/10=0.7。這個方法除了車廠本身使用外,開始影響到供應商,甚至通過這個變化來進行采購預測。

以上就是一個典型的例子。某公司就是通過控制這個庫存系數(shù)來進行采購量(入庫數(shù)量)的預測。

供應商通過上一級客戶(比如一級供應商對應汽車車廠,二級供應商對應一級供應商),得到下個月(即二月)的銷售量為7480,又給出三月的銷售預測為9432,通過一月月底庫存量的計算,加上二月預計采購量和已經得到的二月銷售預測量就可以計算出庫存銷售。

二月庫存系數(shù)= 二月庫存/(一月庫存 +二月進庫 – 二月出庫)

這個計算方式還添加上一定的客觀因素,以主觀系數(shù)的認識添加進計算公式中。

筆者曾經在這個時候,詢問過不少過使用這種方法的從業(yè)人員,大多數(shù)都只被告知,設立的庫存系數(shù)不得少于1.5,一旦這個倍數(shù)少于1.5的,是不能通過上一級的審查,至于1.5以上是多少,則根據各自情況和感受,自主地設立,不管是2.1還是1.75,只要高于1.5,并且得出來的結果看起來似乎合理就可以了。當然,這種訂貨法也為此產生不少問題,筆者曾經另文指出過。

至于為什么是1.5作為一個限制,沒人可以做出解釋。由于這種方法牽連甚廣,也流傳很久,因此無法獲得一個合理和可信的答復。

四分位法就一組數(shù)據由小到大排序后,分成四等份。最小的四分位數(shù)稱呼為下四分位數(shù),而最大的四分位數(shù)則稱為上四分數(shù),中間的四分位數(shù)則是中位數(shù),

以下是一個圖示:

四分位距=上四分位數(shù)-下四分位數(shù)。它是50%中間值形成的一個間距。

四分位法有一個重要的數(shù)據指導作用,就是從中分辨出哪些數(shù)據屬于疑似異常值。我們把下四分位,中位,上四分位分別稱為Q1,Q2,Q3,而四分位距就是Q3-Q1,稱為IQR(the interquartile range)。

而疑似異常值的界定就是通過公式Q2+/- 1.5 x IQR來劃分。在此范圍外稱為疑似異常值。

以下的數(shù)據1和數(shù)據2,除了最大值不同外,其他都是相同。

 

而彼此的IQR都是相同的,即3+/-1.5*(4-2),得出下限為0,上限為6。因此疑似異常值是就是0和6這個區(qū)間之外的數(shù)值,而兩組數(shù)據中,15就因此被認為是一個疑似異常值了。

而通過圖例也直觀地可以看出,數(shù)據2的最大值明顯偏離這兩組數(shù)據中心的其他數(shù)據。

但是,有一個疑問,就是為什么要1.5*IQR呢?非要它的1.5倍,而不是2或者1,甚至其他倍數(shù)呢?

其實,它和正態(tài)分布有所關聯(lián)。

以下是一個標準正態(tài)圖。

標準正態(tài)圖表示了整個數(shù)據的68.26%位于平均值(μ)的一個標準差(<σ)內,約95.44%位于平均值(μ)的兩個標準差(2σ)內,約99.72%的整個數(shù)據位于平均值(μ)的三個標準差(<3σ)內。其余0.28%的數(shù)據位于平均值(μ)的三個標準差(>3σ)之外。

如果我們把箱型圖和這個結合起來,如下(來源于維基),就容理解一點。

IQR就是Q3減去Q1,含有該組數(shù)據的50%數(shù)據。而標準正態(tài)圖表示,正負一個標準差內對應的是68.26%。而當一組數(shù)據處于標準正態(tài)分布的話,中位值和平均值是相同的。

這么一來,IQR就是處于正負一個標準差內,因為它們只包含了50%的數(shù)據,而非68.26%。而上下四分位值分別是2.5和-2.5,意味著以中位值為中間線,兩邊各占25%,合計就是50%。通過相應的EXCEL公式,可以計算出它們分別對應的就是正負0.6745σ了。

先暫且回到標準正態(tài)圖上。在實驗科學中有對應正態(tài)分布的三西格馬法則(three-sigma rule of thumb),是一個簡單的推論,內容是“幾乎所有”的值都在平均值正負三個標準差的范圍內,也就是在實驗上可以將99.72%的概率視為“幾乎一定”。也就是正負三個標準差外發(fā)生的概率,是“意外”,是“異?!睂е碌?。

因此我們可以套用公式計算,上限為3個標準差的時候,設這個倍數(shù)為X

Q1和Q3我們在上邊已經計算過了,是+/-0.6745σ,所以代入得出:

得出X約為1.7,也就是說,當1.7倍的時候,可以約等同于標準正態(tài)分布的正負3個標準差,那么以外的數(shù)據則視為疑似異常值。

但是如果我們把X設為1.5并代入計算,則得出只有+/- 2.7σ左右。

而使用1.5,實際上并非是一個完全數(shù)學推理和根據正態(tài)分布得出來的數(shù)字,盡管1.7會更精確,但是1.5會相對地容易被記住。在這一點上,筆者看到某些文章的所謂說法就是盡管長期應用和科學論證等等,這就見仁見智了。

而1.7和1.5得出來的差異不算很大,所以1.5就這樣被傳了下來。

圖例可以看出和幫助理解:

再回到原來,這么一來,就聯(lián)想到,汽車產業(yè)使用1.5倍,大概就是因為這個原理。保證備貨量是在“意外”之內,再適當提升來減少“意外”,所以1.5倍是一個基準值。

當然,這個是筆者的說法,由于沒有經過設計這套備貨法則的人驗證,是否真實如此,不得而知。

那么,相信讀者可以從中獲益,在數(shù)據處理,訂貨方面不妨從這一點著手思考。

免責聲明:羅戈網對轉載、分享、陳述、觀點、圖片、視頻保持中立,目的僅在于傳遞更多信息,版權歸原作者。如無意中侵犯了您的版權,請第一時間聯(lián)系,核實后,我們將立即更正或刪除有關內容,謝謝!
上一篇:全力提升供應鏈管理服務水準,日日順供應鏈標準化建設成果不斷涌現(xiàn)
下一篇:需求預測常面臨的問題
羅戈訂閱
周報
1元 2元 5元 10元

感謝您的打賞

登錄后才能發(fā)表評論

登錄

相關文章

2025-05-01
2025-04-10
2025-03-26
2025-03-24
2025-03-24
2025-03-24
活動/直播 更多

倉儲管理之全局視角:從入門到精通

  • 時間:2025-04-24 ~ 2025-05-16
  • 主辦方:馮銀川
  • 協(xié)辦方:羅戈網

¥:2080.0元起

報告 更多

2025年3月物流行業(yè)月報-個人版

  • 作者:羅戈研究

¥:9.9元